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A dynamical mode1 of normal immune response has been formulated in terms 
of cellular automata by Kaufman et al. We generalize this model incorporating 
the antigens as a dynamical variable. This generalized model not only describes 
the kinetics of primary and secondary responses of humoral immunity, together 
with the appropriate memory cells, but also describes the vaccinated state as 
well as the states of low-dose and high-dose paralysis. Recently models of auto- 
immune response have also been developed in terms of discrete automata. But 
the models are underdetermined by the experimental facts, i.e., several models 
can account for the same set of observed biological facts. With an aim to find 
out how large this underdeterminacy is and how it can be reduced systemati- 
cally, we have carried out an exhaustive computer-aided search of all those dis- 
crete three-cell and five-cell models of autoimmune response which at present 
cannot be ruled out by the existing biological informations. Out of the 3:5 
possible five-cell models, only one fulfilled our criteria. We also carried out 
simulations of the dynamics of some of these models on a discrete lattice. We 
discuss the relevance of random interactions in the context of autoimmune 
disease. 

KEY WORDS: Immune response; cells; networks; automata; attractor; fixed 
point; limit cycle. 

1. I N T R O D U C T I O N  

F o r  c e n t u r i e s  b i o l o g i s t s  h a v e  s t u d i e d  n o t  o n l y  t he  v a r i o u s  m e c h a n i s m s  of  

i m m u n e  r e s p o n s e  in  l i v ing  m a t t e r ,  b u t  a l so  d e v e l o p e d  v a c c i n e s  a g a i n s t  

m a n y  o f  t h e  d iseases .  (1) Phys i c i s t s ,  o n  t he  o t h e r  h a n d ,  w o u l d  l ike  to  

describe t h e s e  a p p a r e n t l y  d i v e r s e  p h e n o m e n a  quanti tat ively  o n  t he  bas i s  of  
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the simplest possible dynamical models. Most of the theoretical models so 
far have been formulated in terms of differential equations. (2) In this work 
we shall follow a new approach (3'7~'3 formulated in terms of discrete 
automata. 

We would like to emphasize that the new approach in terms of the dis- 
crete automata is not necessarily an alternative to the more conventional 
approach based on differential equations, but is complementary to the 
latter. In a complex system like living matter it is often very difficult to 
judge which are the most relevant factors that must be incorporated in a 
model intended to describe a particular set of biological phenomena. 
Moreover, it is often difficult to decide a priori the appropriate range of 
allowed values for the relevant parameters of the model. We shall argue 
later that the discrete automata models not only help to pinpoint the rele- 
vant variables and to fix the range of allowed values of the parameters, but 
also provide the basic theoretical structure that should be considered only 
as the zeroth approximation to the most appropriate model (see ref. 9 for 
a detailed justification of the automata-theoretic approach). The next step 
in the development of the theory would be to take the continuum limit of 
the dynamical equations so as to get the desired dynamical model in terms 
of differential equations. This last step, however, has not been carried out 
in this paper. 

Some essential aspects of immune response are reviewed in 
Appendix A. Here we just explain a few relevant terms. Immune response 
follows if an antigen is recognized by the immune system. The helper and 
suppressor T cells, respectively, enhance and inhibit the immune response. 
Antigens are neutralized either by the antibodies produced by the B cells 
(humoral immunity) or by the effector T cells or by natural killer cells 
(cell-mediated immunity). Autoimmune response (AIR) follows when a 
part of the body is mistakenly recognized as an antigen by the immune 
system of the same individual. (1~ Such a response can lead to an auto- 
immune disease, e.g., multiple sclerosis, etc. In this work we focus our 
attention on simple models describing normal immune response (NIR) and 
AIR. Whenever we talk about a cell type, we mean only those involved in 
the considered immune reaction. 

2. T H E  M O D E L S  

Our models fall within the general category of cellular automata, 
which have already found extensive applications in various branches of 

3 For the continuous version also see refs. 4 and 5. See ref. 6 for a critique, part of which 
applies to differential equations only. 
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science/H) The general framework of our models can be formulated as 
follows(7'8): Let us denote the concentration of the ith cell by S~. We assume 
that each S~ can take one of two possible values: 1 corresponds to high 
concentration of the cell and 0 to low concentration. Thus, the concentra- 
tion of each type of cell, rather than each individual cell, is assumed to 
behave like an automaton. Suppose C o. denotes the interaction from the cell 
j to the cell i. Note that Co is not necessarily equal to Cji. One crucial 
feature of our models is that the interactions C~ are allowed to take only 
three integer values, 1, 0, - 1. We assume that if the sum Z C~Sj(t) at time 
t is greater than a preassigned threshold, then at time t + 1 we must have 
S~(t+ 1)=  1, and otherwise S~(t+ 1)=0 .  Formally, this can be written as 

8i(t+ 1)=f (2 cos~t) ), i , j=l  ..... n (1) 

where n is the total number of cell types a n d f i s  a function of the argument 
shown in the parentheses. The general form of the function f assumed most 
often in this paper is 

f ( x i )=O(x i -~ i  ) (2) 

where 0 is the step function defined by 

O(y)=O for y ~ 0  (3) 
O(y) = 1 otherwise 

/~i is a preassigned threshold at which the ith automaton switches on from 
the state 0 to the state 1. For  the sake of simplicity, we assume the same 
threshold # = 0.5 for all types of cells, if not stated otherwise. Unlike some 
of the earlier papers, (3'12~ which formulated the dynamics in terms of logical 
operations, e.g., OR, AND, etc., the dynamics has been formulated in terms 
of algebraic operations in Eqs. (1)-(3). However, the logical expressions 
can be written in terms of algebraic operations and vice versa. 

The states of all the cells are updated synchronously. The state of the 
whole system is described by the binary representation of the number 
(8nSn-1"" 3281), which describes the concentration of the n types of cells 
in the order specified. Therefore, the states in the three-cell model are 
labeled by the numbers 0 to 7, while those in the five-cell model are labeled 
by tile numbers 0 to 31. For  example, in the case of the five-cell models, 
13 = 01101 describes the state where the concentrations of the first, third, 
and fourth types of cells are high. For  convenience, Tables IA and IB list 
all these states. We shall not explore any relation between our cellular- 
automata-type models and spin-glass models (~3) in this paper. 
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Table IA. Eight States of Our Three-Cell Model, 
Type A, for Autoimmune Response a 

Cell concentration 
State 

number S K H Name offixed point 

0 0 0 0 Virgin state 
1 0 0 1 
2 0 1 0 
3 0 1 1 
4 1 0 0 
5 1 0 1 Immunized state 
6 I 1 0 
7 1 1 1 Sick state 

a We include suppressors S, autoimmune effectors K, and helpers H. 

Kaufman et al. (KUT)  (3) developed a kinetic model of NIR. Unlike 
the concentrations of the antibody (A), the B cells (B), the TH cells (H), 
and Ts cells (S), that of the antigens (E) does not have a natural dynamics 
in the K U T  model; the concentration of the antigen enters the dynamics 
only as a fixed parameter (E = 0 and 1, respectively, corresponding to low 
and high dose of antigen). In the virgin state the concentration of all types 
of cells is low, the concentration of all but the Ts cells is low in the state 
of paralysis, whereas in the active state the concentration of all types of 
cells, including that of the antibodies, is high. The state in which the con- 
centration of only the TH and T s cells is high was identified by K U T as the 
memory state. In the K U T  model the rate of  production of the/ - type  cells 
depends not only on the concentration of / - type cells, but also on those of 
the other types of cells. KUT argue that at a time t the production of a par- 
ticular type of cell depends on whether the corresponding genes are on or 
off. However, assuming that the time delay between the switching on of a 
gene and full production stage is the same for all types of cells, the simple 
model exhibits several nice features. In the presence of antigen, the fixed 
points of the K U T  model are the state of paralysis and the active state, 
whereas in the absence of antigen the fixed points are the virgin state, the 
state of paralysis, and the memory state. Although K U T suggested the 
scenario that the antigens are neutralized "after enough antibody is 
produced," their formal model is incapable of demonstrating it explicitly as 
a consequence of the dynamical evolution. In Section 3 of this paper we 
generalize the KUT model, incorporating explicit dynamics of the antigen 
and compare some of the novel features of the model with the correspond- 
ing biological phenomena. Kaufman et al. have also developed a five-cell 
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Table lB. The 32 States of Five-Cell Extended KUT Model 
for Normal Immune Response a 

Cell concentration 
State 

number  E B H S A Name of fixed point 

0 0 0 0 0 0 
t 0 0 0 0 1 
2 0 0 0 1 0 
3 0 0 0 1 1 
4 0 0 1 0 0 
5 0 0 1 0 1 
6 0 0 ! 1 0 
7 0 0 1 1 1 
8 0 1 0 0 0 
9 0 1 0 0 1 

!0 0 ! 0 1 0 
!1 0 1 0 1 I 
!2 0 1 1 0 0 
13 0 1 1 0 1 
14 0 1 1 1 0 
15 0 1 1 1 1 
16 1 0 0 0 0 
17 1 0 0 0 1 
18 1 0 0 1 0 
19 1 0 0 1 1 
20 1 0 1 0 0 
21 I 0 1 0 1 
22 1 0 1 1 0 
23 1 0 1 1 1 
24 1 1 0 0 0 
25 1 1 0 0 1 
26 1 1 0 1 0 
27 1 1 0 1 1 
28 1 1 1 0 0 
29 1 1 1 0 1 
30 1 I 1 ! 0 
31 I i 1 1 ! 

Virgin state 

Low-dose paralysis 

Vaccinated state 

Immunized state 

High-dose paralysis 

a We include antibodies A, suppressors S, helpers H, B ceils B, external antigen E, and auto- 
immune effectors K. For five-cell AIR models, A, S, H, B, and E of the K U T  table have to 
be replaced by antigen-specific helpers, au to immune  effectors, anti-idiotypic suppressors, 
anti-idiotypic helpers, and antigen-specific suppressors in the WAC sense; fixed points for 
Fig. 3a are virgin state 0, immunized state 29, and sick state 31. 
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model that distinguishes between the roles played by the immature B cells 
and mature B cells in immune response. However, in this paper we shall 
not distinguish between the mature and immature B cells. 

Based on a suggestion of Jerne, (14~ Weisbuch and Atlan (v) and subse- 
quently Cohen and Atlan/8) developed a class of dynamical models for 
AIR. (In this paper we shall refer to these models as the WAC model.) The 
basic idea of this approach, at least in the Cohen-Arian interpretation, is 
that for every idiotypic network (a specific set of cells that respond to a 
specific antigen) there is an anti-idiotypic network that recognizes the 
idiotypes just as the idiotypes recognize the antigen. Therefore, in the 
immune system consisting of mutually-interacting idiotypic and anti- 
idiotypic cells a deterministic dynamics is associated with each type of cell, 
so that the competing interactions between them lead to the various 
possible steady states (attractors of the dynamics) which correspond to the 
various possible conditions of the body, e.g., the healthy state, the 
immunized state, etc. 

The five different types of cells constituting the WAC model can 
be interpreted as follows: the antigen-specific TH cell (cell l) (more 
appropriately called an inducer cell) the autoimmune effector T cell (cell 2), 
the anti-idiotypic Ts cell (cell 3), the anti-idiotypic T n cell (cell 4), and the 
antigen-specific Ts cell (cell 5). In the sick state the concentration of all five 
types of cell is high. The immunized state corresponds to a high concentra- 
tion of all but the effector cells. The dynamics in the WAC model is given 
by Eqs.(1)-(3) with suitable interactions. In the WAC model the 
immunized state is a fixed point of the dynamics, whereas the st'ate of sick- 
ness is not; the latter state decays into the immunized state. (The only 
other fixed point is the virgin state.) WAC argued that if the patient can 
survive this critical period of sickness, it would reach the immunized state. 

In reality some patients do not recover from autoimmune disease (and 
eventually die); for such patients only the state of sickness should be the 
appropriate attractor of the dynamics. On the other hand, for those 
patients who recover from the disease (and remain immunized against 
further attack by the same disease) the appropriate attractor of the 
dynamics is the immunized state. These differences in the final steady state 
may arise from two different reasons: (i) Different initial conditions: the 
initial states of these two kinds of patients may be different, although the 
model (i.e., the interactions and the thresholds) is the same for both; in this 
case the model must have both the states of sickness and immunization as 
its attractors. We shall refer to such models as models of type A. If the 
attractor states of sickness and immunization form a limit cycle of period 
two, it can be interpreted as recurring sickness. (ii) Different dynamical 
equations: the equations governing the dynamical evolution of the two 
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kinds of patients are different. In the latter situation there are two distinct 
models, one having sickness as a steady state, whereas the immunized state 
is that of the other. We shall refer to such models collectively as models of 
type B. Thus, models of type A have three attractors: the virgin state, the 
immunized state, and the sick state. On the other hand, models of type B 
have only two attractors: either the virgin state and the immunized state or 
the virgin state and the sick state. The WAC model is a five-cell model of 
type B and does not contain the sick state as an attractor. In Section 4 we 
investigate models of type A and type B systematically by computer simula- 
tion with an aim to develop three-cell and five-cell analogues of the WAC 
model imposing the various possible biologically-motivated restrictions on 
the nature of the interactions. We establish some of the general properties 
of such three-cell models (details are given in Appendix B). Unfortunately, 
the properties thus inferred can serve only as guidelines to make educated 
guesses of the appropriate models in a biological context. 

3. E X T E N D E D  K U T  M O D E L  OF NIR 

Our main aim in this section is to extend the original K U T model so 
as to treat the concentration of the antigens E as a dynamical variable 
rather than just a parameter. Just like the B cells, T cells, and the antibody, 
we shall also use two-state variables to describe the antigens. Let us denote 
the states of such a system of five automata by the binary representations 
of the numbers ($5S4S3S2S1) in that order, where $1 =A,  $2 = S, 3 3 = H, 
$4 = B, and $5 = E. The time evolution of these five variables is given by 
the following five equations: 

A = E .AND.  B . A N D . H  (4) 

S = H . O R . S  (5) 

H = (E.AND.  ( . N O T . S ) ) . O R . H  (6) 

B = ( E . O R . B ) . A N D . H  (7) 

E = E . A N D . ( . N O T . A )  (8) 

We shall call the model defined by Eqs. (4)-(8) the extended K U T model. 
Equation (8) is absent in the KUT model. Moreover, Eq. (7) ila the 
extended K U T  model is slightly different from the corresponding form in 
the KUT model. The rationale behind this latter modification is that the 
concentration of B cells can be high (i) in the presence of a high dose of 
antigen when the concentration of TH cells is high, ( i i ) in the memory 
state, where the concentrations of both the TH and B cells are high 
(although there is no antigen). (See also Neumann. (17)) 
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The virgin state can contain a low dose of antigen (i.e., within the 
tolerance limit). We would like to interpret state 2 as that of low-dose 
paralysis, whereas the state 18 corresponds to high-dose paralysis. State 6 is 
to be interpreted as the vaccinated state, whereas the state 14 is the memory 
state. Note that there are high concentrations of T cells as well as B cells 
in the memory state which follows humoral immunity. On the other hand, 
the vaccinated state corresponds to a high concentration of T cells only. 

The flow diagram for the extended KUT model (4)-(8) is shown in 
Fig. 1. The fixed points of this model are: the virgin state (0), the vac- 
cinated state (6), the memory state (14), the state of low-dose paralysis (2), 
and the state of high-dose paralysis (18). 

We now summarize some of the nice features of this model. 

(i) Primary response in humoral immunity: Suppose a high dose 
(beyond the tolerance limit) of antigen is added to the virgin system. The 
corresponding initial state is now denoted by 16 (10000). The sequence of 
the transitions 16 --* 20 -~ 30 ~ 31 --* 15 --* 14 describes the sequence of the 
steps in humoral immunity through NIR; the presence of antigen activates 
the TH cells, which then activate the T s and B cells, the latter then 

21 23 9 

1 2 " ~ 1 3  8 

29-~ 15 
I? 3 ~ 27 

28--'31 10 ~ 1 9  
2 2 +  11 
24-+20 

26 

Fig. 1. The flow diagram of the states in the extended KUT model [Eqs. (4)-(8)] of normal 
immune response. The states are labeled by the binary representation of the numbers 
($5S4S3S2S1) in the order specified; S~=0 and 1 represent, respectively, the low and high 
concentrations of the cells of ith type. The antibodies, the T s cells, the T H cells, the B cells, 
and the antigen correspond, respectively, to i = 1, 2, 3, 4, and 5. The virgin state (0), low-dose 
paralysis state (2), vaccination (6), the high-dose paralysis state (18), and the immunized or 
memory state (14) are the fixed points of the dynamics. 
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produces the antibodies which subsequently neutralize the antigen, and 
then the concentration of the antibodies falls in the absence of the antigen; 
the memory of the specific antigen is carried by the B and T cells forever 
(at least for a very long time). 

(ii) Secondary response: This extended KUT model also describes 
the secondary response. Suppose antigen in sufficiently high dosage is 
added to a system in state 14 carrying the memory of this antigen from a 
previous encounter. The corresponding state now is 30. The sequence of the 
states 30-~31 ~ 1 5 ~  14 is also fully consistent with the secondary 
response observed in biological systems. 

(iii) Vaccination: The virgin system can be vaccinated against a 
specific antigen by inoculation with a sufficiently high concentration of the 
corresponding specific T cells. Suppose a sufficiently high dose of the 
specific TH cells is inoculated into the virgin system; the corresponding 
state is now denoted by 4. From the flow diagram in Fig. 1 it is clear that 
the system then ends up in the vaccinated state 6. Simultaneous inoculation 
with both the specific TH and Ts cells also vaccinates the system. Invasion 
of the vaccinated state with a high dose of antigens takes the system to the 
initial state 22. Then the sequence of the states 22 ~ 30 ~ 31 --, 15 ~ 14 
describes the NIR that follows, leading finally to the memory state. 

(iv) Paralysis: The system can get paralyzed if the T s cells dominate. 
Low-dose paralysis (state 2) follows a low dose of antigen, whereas a high 
dose of antigens persist in the state of high-dose paralysis (18). Invasion of 
the low-dose paralysis state (2) by a high dose of antigen leads to the state 
of high-dose paralysis (18). The transition 26 ~ 18 implies that even an 
inoculation of the state of high-dose paralysis with a high dose of the 
specific B cells fails to trigger the immune response and the system reverts 
back to the state of high-dose paralysis. On the other hand, the sequence 
of transitions 18- ,  19 ~ 2 implies that by inoculating a sufficiently high 
dose of the specific antibodies into the state of high-dose paralysis, it is 
possible to neutralize the antigens and the system goes to a state of low- 
dose paralysis. However, if the specific TH cells are inoculated into the state 
of high-dose paralysis, the system goes to the state22 and then the 
sequence of the transitions 22--* 30 ~ 31--* 15 ~ 14 implies that a NIR 
follows, which finally leads to the memory state. This sequence highlights 
the importance of the regulatory role of the T cells in NIR. 

4. D I S C R E T E  A U T O M A T A  M O D E L S  OF AIR 

We have studied the systematics of the fixed points of all possible 
models of AIR with three and four cells, and of a subset with five cells. For 
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the models with 3-5 cells we have, respectively, 9, 16, and 25 possible inter- 
actions. Since each of the interaction strengths can take the values - 1, 0, 
and + 1, the total number of possible models with three, four, and five 
types of cells is 39= 19,683; 316 =43,046,721; and 3 2 5 -  ~ 1012; respectively. 
The number of models having the attractors 0-7 in the three-cell models 
(and also the attractors 0-15 in the four-cell models), as enumerated 
by a computer simulation, are listed in Table II. This table shows that, 
depending on the biological phenomena to be described, there are always 
a large number of ways to choose the interactions such that the biological 
steady states correspond to the attractors of the model. However, as we 
argue in the next subsections, the number of possible choices can often be 
narrowed down by imposing certain reasonable restrictions on the inter- 
actions in order to be consistent with the biological evidence. 

Before we begin the computer-aided search of the relevant models, let 
us establish two important properties of the n-cell models of type A which 
will be used later to compare these models with living systems. Here cell 
type 2 corresponds to the autoimmune effector cells and the immunized 
state means that the concentrations of all cell types except these effector 
cells are high. 

Table II. The Possible Attractors and the Number  of Three-Cell  and 
Four-Cell Models of Auto immune Response Having the Attractors 

Cell 
types 

Attractors Number of Attractors Number of 
binary models binary models 

representations having the Cell representations having the 
of($3S2S1) attractor types of(34S3S2S1) attractor 

0 19683 
I 4900 
2 4900 
3 2634 
4 4900 
5 2634 
6 2634 
7 1576 

0 43046721 
1 8799531 
2 8799531 
3 4763836 
4 8799531 
5 4763836 
6 4763836 
7 2783461 
8 8799531 
9 4763836 

10 4763836 
11 2783461 
12 4763836 
13 2783461 
14 2783461 
15 1713465 
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T h e o r e m  1. For the general n-cell models of type A (thresholds 
assumed to be 0.5) both the sick state and the immunized state are f ixed 
points if and only if C= = 1. 

Proof. Suppose a certain choice of the set of interactions {Cik} 
(i, k = 1 ..... n) ensures that the immunized state is a fixed point. Therefore, 
Y~ C2kSk = 52' C2k <0.5, where the prime on the summation indicates that 
the term k =  2 is excluded from the sum. On the other hand, in order 
to have the sick state also as a fixed point with the same choice of the 
interactions, we must have Z C2~Sk = (Z '  C2~+ C22) >0.5. Both these 
requirements can be satisfied simultaneously only if C22 = 1. 

T h e o r e m  2. For the general n-cell models of type A (thresholds 
assumed to be 0.5) the sick state and the immunized state constitute a limit 
cycle of period two if and only if C22 = - 1 .  

ProoL Suppose we begin with the sick state. In order that this state 
makes a direct transition to the immunized state, we must have Z C2kSk = 
(~ '  C2k+ C22)<0.5. On the other hand, in order to have the direct 
transition from the immunized state to the sick state, we must also have 
Z '  C2k > 0.5. Both these conditions can be satisfied simultaneously only if 
C22 = --1. 

We conclude from Theorems 1 and 2 that there is no model of type A 
with C22 = 0. However, there exist models of type B with C22 = 0. If biologi- 
cal evidence rules out any self-interaction of the effector cells in some 
biological systems, then the different final states of the different patients 
could still be explained by those models of type B which do not involve 
self-interaction of the effector cells. In our computer-aided search we do not 
allow negative self-interaction of any cell type, and therefore models of 
type A with limit cycles are excluded. So far as the interpretations of the 
states are concerned, the virgin state must be interpreted as the tolerant 
state, just as we did in the case of the NIR. 

In order to eliminate the unsatisfactory models and select the most 
appropriate one, we impose the following standard conditions on the 
models: (i) the helpers (as well as the effectors) must not suppress and the 
suppressors must not help in the immune response; (ii) none of the n types 
of cells is allowed to have n - 1 vanishing interactions from others; trivial 
dynamical behavior is exhibited by cells receiving n -  1 vanishing interac- 
tions from others, because even if it has positive self-interaction, it would 
behave at best only as a fixed parameter; and (iii) two different types of 
cells must not have identical interactions from the others, because in that 
case the states of the two types of cells would remain identical for all times 
t > 1 and the n-cell model would become effectively an (n - 1)-cell model. 
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The original Weisbuch-Atlan model ~7~ does not satisfy condition (iii), 
because both cell types 3 and 4 receive identical interactions. 

4 .1 .  T h r e e - C e l l  M o d e l s  o f  A I R  

In the three-cell model, cell 2 is identified as the autoimmune effector 
T cell; however, cell 1 represents both the antigen-specific as well as anti- 
idiotypic TH cells, whereas cell 3 represents the two corresponding sup- 
pressor cells. Thus, the three-cell model does not distinguish between the 
antigen-specific and anti-idiotypic helper cells. The same also holds true for 
the suppressor cells. The "virgin state," the "state of sickness," and the 
"immunized state" are labeled by the numbers 0, 7, and 5, respectively, in 
the three-cell model. The three-cell models of type A must have the three 
attractors 0, 5, and 7 only, whereas the three-cell models of type B must 
have either the two attractors 0 and 5 or the two attractors 0 and 7. 

It is worth mentioning here that in order to have the states 5 and 7 
as the attractors, the interaction C12 must be positive whenever C13 = - 1  
because the threshold for switching is assumed to be 0.5. This aspect of the 
three-cell models may be somewhat unsatisfactory, because to our 
knowledge the effector cells do not act like helpers of the inducer cells in 
living systems. 

The general form of the interaction matrix C and the number of 
models of types A and B are listed in the Table III. Out of the five models 
of type A, only one, shown in Fig. 2a, satisfies all the standard conditions 
(i)-(iii). Note, however, that this model has the drawback that none of the 
states, other than the state 5 itself, flows into the state 5 following the 
dynamics. 

Out of the 15 three-cell models of type B with the attractors 0 and 5, 
only three satisfy the standard conditions (i)-(iii). Only two of these, 
shown in Figs. 2b and 2c, have C22 = 0. Both models have the nice feature 

Table III. The Number of Various Types of Possible Three-Cell 
Models of Autoimmune Response a 

Model 
(interaction matrix) Attractors Number of models 

0,1 0,1 -1 ,0  0,5,7 5 
0,1 0,1 -1 ,0  0,5 15 
0, 1 0, 1 0, 1 0, 7 26 

a The symbol x, y for an element of the interaction matrix implies that the element is allowed 
to have either of the two values x or y. 



Models of Immune Response 1031 

Fig. 2. The three-cell models of autoimmune response. The automata 1, 2, and 3 represent, 
respectively, the concentrations of the TH cells, the autoimmune effector cells, and the T s cells. 
For the constraints imposed on the interactions see Table III. The virgin state (0), the 
immunized state (5), and the sick state (7) are the only attractors of model (a). The attractors 
of models (b) and (c) are 0 and 5, whereas those of models (d) and (e) are 0 and 7. 

that state 4, in which the suppressors dominate, flows into the virgin state 
(i.e., the tolerant state) without passing through the sick state. In order to 
decide which of these two models is more realistic, we examined the 
detailed features of their flow diagrams. For  example, the sequence of states 
that lead from state 1 to state 5 are 1 - ,  7 ~ 5 in model 2b and 1 ~ 5 in the 
model 2c. In our view, the former is more realistic than the latter. In fact, 
beginning from any of the states 1, 2, 3, or 6, the system reaches state 5 in 
model 2b always passing through the sick state. On the other hand, the 
system becomes immunized starting from the states 1, 2, 3, or 6 without 
ever becoming sick. Although there is no natural route to the sick state in 
model 2c, the sick state, once prepared, decays into the immunized state. 
Therefore, we believe that model 2b is more realistic than model 2c. 

Out of the 26 three-cell models of type B with the attractors 0 and 7, 
only 9 satisfy all the standard conditions (i)-(iii). Only two of these, shown 
in Figs. 2 d  and 2e, have C22 = 0. Both models have the common feature 
that state 4 flows into the virgin state. But, states 2, 5, and 6 end up in the 
virgin state in model 2d, whereas the same states end up in the sick state 
in model 2e. Therefore, we consider model 2e to be more satisfactory than 
model 2d. Thus, we conclude that so far as the three-cell models of type B 
are concerned, the models of Fig. 2b (having the attractors 0 and 5) and 
Fig. 2e (having the attractors 0 and 7) are the most satisfactory. 

4.2. Five-Cell  Models  of  AIR 

The automata 1, 2, 3, 4, and 5 describe, respectively, the antigen- 
specific T H cell, the autoimmune effector cell, the anti-idiotypic T s cell, the 

822/59/3-4-32 
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anti-idiotypic TH cell, and the antigen-specific T s cell, as in the WAC 
model. The five-cell models of type A must have the attractors 0, 29, and 
31 only, whereas the five-cell models of type B must have either the two 
attractors 0 and 29 only or the two attractors 0 and 31 only. 

We begin the computer-aided search of the five-cell models of AIR 
with the following assumptions: ( a ) T h e  antigen-specific effector cells do 
not send any stimuli to the other cells in the same antigen-specific network, 
i.e., C12 = 0 = Csz; this restriction was also imposed by Weisbuch and Atlan 
on their model of AIR. (b) The helper-to-effector, the suppressor-to-effec- 
tor, and the helper-suppressor interactions within the antigen-specific 
idiotypic network are never broken, i.e., C21 = 1, C25 -~- - - l ,  C15 ~-- - 1 ,  and 
C51 = 1. These restrictions are different from the corresponding ones in the 
WAC models; cells 1 and 5 do not interact directly in the latter models. 
(c) None of the cell types is allowed to have negative self-interaction. 
However, only the cells of the antigen-specific idiotypic network are 
allowed to maintain their concentration through positive self-interaction in 
the absence of inputs from other cells, i.e., Ckk = 0 or ! for k = 1, 2, and 5, 
but Ck~ = 0 for k = 3 and 4. (d) Since direct helper-suppressor interaction 
within the anti-idiotypic network is not required for its coupling to the 
idiotypic network, we assume C 3 4 = 0 =  C43. ( e )A  high concentration of 
the suppressors in one network does not directly influence the helpers and 
suppressors of the other network, i.e., C45 = 0 = C13 and C35 = 0 = C53. The 
assumptions (a)-(e) lead to the interaction matrix of the form shown in 
Table IV; the corresponding numbers of models of type A and type B are 
also listed. 

Out of the nine five-cell models of type A, only two, shown in Figs. 3a 
and 3b, satisfy all the standard conditions (i)-(iii). Of these, model3a  
seems to be more realistic than model 3b because cell 3 does not influence 

Table IV. The Number  of Various Types of Possible Five-Cell 
Models of Auto immune Response a 

Model 
(interactions matrix) Attractors Number of models 

0, 1 0 0 0, 1 - 1  0, 29, 31 9 
1 0 ,1  - 1 , 0  0 ,1  - 1  

0, 1 0, 1 0 0 0 0, 29 30 
0,1 0,1 0 0 0 

1 0 0 0, 1 0, 1 0, 31 35 

a The symbol x, y for an element of the interaction matrix implies that the element is allowed 
to have either of the two values x and y. 
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i ' - r  

Fig. 3. The five-cell models of autoimmune response. The automata  1, 2, 3, 4, and 5 repre- 
sent, respectively, the antigen-specific T H cell, the autoimmune effector, the antiqdiotypic Ts 
cell, the anti-idiotypic Tn  cell, and the antigen-specific T s cell. For the constraints imposed 
on the interactions see the text. The virgin state (0), the immunized state (29), and the sick 
state (31) are the only attractors of the dynamics of each of these two models. 

any other cell in the latter. The flow diagram of the model in Fig. 3a is 
shown in Fig. 4. The symmetry requirements of Hoffmann (6) are fulfilled in 
Fig. 3, at least for Ct4 = C41, C35 = C53. 

Of the 30 models of type B with the attractors 0 and 29, there are only 
6 with vanishing C22 which satisfy all the standard conditions (i)-(iii). 
These 6 models are shown in Figs. 5a-5f. Because of our assumption (b), 
the models shown in Fig. 5 possess nonzero C15 and C51, unlike the WAC 
models, which have C15 = 0 = C51. There are several common features of 
these 6 models, e.g., state 3 leads to the immunized state via the sick state. 

21 

2? 
4, 
6--+4~- 2 2 ~  26 @ 20 ~- 30 <'-19 < 8 

1+6 <-2/+ 

---" 2,,S ~'~7 <-12 

2.3 ~ I k  

!0 

Fig. 4. 

9 7 25 3 

13 

1 

The flow diagram of the states in the five-cell model of AIR shown in Fig. 3a. The 
fixed points are 0, 29, and 31. 
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Fig. 5. 

(e) (f) 

Same as Fig. 3, except that the attractors are the virgin state (0) and the immunized 
state (29). 

However,  only model  5c leads from the state 10 ( =  1010) to the. immunized 
state via the sick state, as it should. Therefore, we believe the model  in 
Fig. 5c is more  realistic than the other  five models in Fig. 5. The flow 
diagram of the model  in Fig. 5c is shown in Fig. 6. This d iagram shows that  
there are some differences between the dynamics  of this model  and those of 
the Weisbuch-At lan  model  (7) and Cohen-At l an  models. ~8) These differences 
arise f rom the differences in the interaction matrices of  these models. 

Fig. 6. 

4 2O 

16~2 #<--30 
i' 

21~28 ~17 <-12 
2 3/1'% 
22-+8 ~ 18 

2/' X 6 

1 3 

7 

14 
The flow diagram of the states in the five-cell model of AIR shown in Fig. 5c. The 

fixed points are 0 and 29. 
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Let us now briefly compare the various models studied in this section. 
The five-cell models distinguish between the idiotypic and the anti-idiotypic 
networks, whereas the three-cell models do not. The four-cell models treat 
the helper and the suppressor cells differently. Although we have also 
studied the four-cell models, we do not present those results in this paper. 
However, all the n-cell models of type A require self-interaction of the 
effector cells. 

5. C O N C L U S I O N  

In this paper we have carried out a systematic investigation of a class 
of models of NIR and AIR where the concentrations of the various cells are 
represented by discrete automata and the set of interacting automata are 
assigned a rule of dynamical evolution. Some special features of these 
models (v'8) are: (i) the number of cell types is small (typically three to five); 
(ii) each of the automata can assume only one of two possible values, 0 
and l, i.e., only two levels of concentration of the cells are distinguished, 
low and high; (iii) only three values of the strengths of the interactions are 
allowed, - 1 ,  0, and t; and (iv) each automaton switches on from the 0 
state to the 1 state at a preassigned threshold value of the sum of the 
stimuli it receives from the other automata. 

So, even within the general framework of discrete automata, there are 
several possible ways of generalizing these models. ( a ) I f  it is found 
necessary to include more types of cells, the number of automata in the 
theory can be easily increased. (b) In order to describe various levels of 
concentration of the cells, the number of allowed values of the automata 
can also be increased. (c) More flexibility in the magnitudes of the inter- 
actions would allow one to express the relative strengths of the various 
positive (also negative) interactions. (as) (d) The thresholds assigned to the 
different automata can also be varied according to necessity. 

Finally, once a small number of possible models has been selected in 
terms of the discrete automata, the corresponding differential equations can 
be written by following well-established procedures. (3'a9) 

In this paper we have studied only models with discrete automata. We 
have proposed a simple generalization of the KUT model for NIR which 
provides a more satisfactory description of the observed biological 
phenomena. We have also investigated the models of AIR of the type 
proposed recently by Weisbuch, Atlan, and Cohen. Atlan eta/. (8'9) state 
that at present the models are underdetermined by experimentally known 
biological facts, i.e., often several models can explain the same set of 
biomedical phenomena. In this work we have laid down some reasonable 
restrictive criteria which help in reducing this underdeterminacy in the 
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context of AIR. Within these restrictions, we made a systematic search of 
the satisfactory models, i.e., we went through all possible n-cell models 
for n = 3, 4, and 5. This systematic aspect distinguishes our work from the 
previous work known to US. (3-9'12) 

From the point of view of biology, several further extensions of these 
models are possible: (i) different responses of the immature and mature B 
cells should be distinguished by the theory, (ii) the two types of B cells, 
namely those which differentiate into plasma cells (which in turn produce 
the antibodies) and those which become memory cells, should also be dis- 
tinguished, and (iii) inclusion of both humoral immunity and cell-mediated 
immunity and also both NIR and AIR in the same model would be more 
satisfactory than having separate models. 

Further progress in this field of study requires further experimental 
input into the theory as well as theoretical output in terms of an 
experimentally verifiable description of a wider variety of biological 
phenomena. 

A P P E N D I X  A. A BRIEF I N T R O D U C T I O N  TO I M M U N E  
RESPONSE 

The immune system consists of fixed components, e.g., the bone 
marrow, the thymus, lymph nodes, spleen, etc., and circulating com- 
ponents, e.g., the lymphocytes and the phagocytes. When challenged by 
invading microbes, generally called the antigen, the macrophages (large 
mononuclear phagocyte cells) respond in a non-antigen-specific manner. In 
contrast to this process of phagocytosis, the response of the lymphocytes is 
antigen-specific, as explained below. 

The lymphocytes are broadly divided into two classes: the B cells 
(produced from the stem cells in the bone marrow) and the T cells 
(matured in thymus); they are distinguished by the presence of different 
surface molecules and by their modes of response to the antigens. In addi- 
tion to the B and T cells, there are small populations of natural killer cells 
which are capable of neutralizing the antigen by killing the target cells. The 
T cells can be divided further into two functionally different classes; these 
are called T4 cells (having CD4 membrane glycoprotein) and T8 cells 
(having CD8 membrane glycoproteins). The T4 and T8 effector cells are 
eytotoxic (killers of target cells). Usually, T4 regulator cells are helpers that 
help in the response of macrophages and specific B lymphocytes, whereas 
T8 regulators are suppressors which inhibit (sometimes even terminate) an 
immune response. 

For an antigen-specific response the antigen must be recognized by the 
specific lymphocytes. The membrane immunoglobulins on specific B cells 
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can directly recognize a specific antigen in its native form by a procedure 
analogous to key-and-lock matching. A pattern stored in a part of the 
antigen, called the epitope, is the analogue of the lock, and the surface 
immunoglobulin receptors of the B cells are the analogues of the key. The 
T cells, on the other hand, cannot recognize the antigen unless the antigen 
is presented properly. Antigen presentation is a process whereby a cell 
(either a macrophage or a B cell or a target cell) expresses antigen on its 
surface in a form recognizable by a T cell. Each lymphocyte possesses 
membrane immunoglobulin receptors of a single specificity. Therefore, 
subsequent to the receptor-epitope matching, a specific lymphocyte 
proliferates rapidly into a clone (a population of genetically identical cells) 
and the corresponding process is called clonal selection. The lymphocytes 
and macrophages coordinate their action through lymphokines. 

Rapidly proliferating B cells play a crucial role in humoraI immunity. 
Terminal differentiation of a fraction of this B-cell population lead to 
plasma cells which synthesize and secret immunoglobulins, called 
antibodies, having the same specificity as the membrane receptors of the 
original B cells. The antibodies react with the antigen and neutralize it. 
During their proliferation some B cells become dormant and do not 
differentiate into plasma cells. These dormant B cells carry the memory of 
the antigen encountered and therefore are called memory B cells. 

The T cells are responsible for cell-mediated immunity as well as 
regulation of the growth and differentiation of the B cells in humoral 
immunity. Inducer T-cells activate T H, Ts, and cytotoxic T cells, whereas 
T H cells activate the B cells. Unlike the B cells, the T cells cannot produce 
antibodies, though cytotoxic T cells can neutralize antigens. Memory T 
cells, together with the memory B cells, patrol the body and provide 
quicker secondary response on future encounter with the same antigen. 

Note that immune response follows if and only if the dose of antigen 
exceeds a certain tolerance limit. Immunological tolerance can be a conse- 
quence of inactivation of the B or Tn cells or activation of T s cells. Tissues 
located at anatomically privileged sites not in contact with the circulation 
do not induce tolerance of lymphocytes. When such tissues somehow come 
in contact with lymphocytes, the latter can respond in a manner as if the 
tissue is an antigen, and the response that follows is called an autoimmune 
response. (An alternative origin of AIR is a change in the network.(8)) " 

Just as tissues can be recognized by the immune system of the same 
individual, the lymphocytes can also be recognized by other lymphocytes. 
The network of B, TH, and T s cells that defend the individual against a 
certain antigen constitute an idiotypic network. Those lymphocytes which 
get stimulated following a recognition of the idiotypic network are said to 
form the anti-idiotypie network. Thus,. in principle every idiotypic network 
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has an anti-idiotypic network; the balance between the two is disrupted 
when the idiotypic network recognizes an antigen. Subsequently, the anti- 
idiotypic network must respond and bring the system to a steady state. 
This is a crucial mechanism for recovery from autoimmune diseases. 

A P P E N D I X  B. GENERAL PROPERTIES OF THREE-CELL 
M O D E L S  OF TYPE A 

In this appendix we list some of the special properties of the three-cell 
models of type A. By the term restricted model in this appendix we mean 
only those models having the general form of the interactions shown in 
Table III. 

Theorem B.1. The self-interaction of cell 1, C~1, in restricted 
three-cell models of type A must be positive. 

Proof. For the three-cell models of type A we must have 

Cll + C13 >0.5 (B.1) 

Since C13 cannot be positive, we must have C~t = 1. Note also that if 
C13 = -1 ,  condition (B.1) would be violated. This leads to the following 
corollary. 

Corollary B.1. Restricted three-cell models of type A must have 
Cl3=0.  

Theorem B.2. The self-interaction of cell 3, C33, in restricted three- 
cell models of type A must vanish. 

Proof. The three-cell models of type A must satisfy the condition 

C31 + C33 > 0.5 (B.2) 

This condition would be violated if C33 = -1 .  On the other hand, 
since both C13 and C23 cannot be positive and since the thresholds are 0.5, 
state 4 would become a spurious fixed point if C33 = 1. Thus, the only 
allowed value of C33 is zero. This result, together with condition (B.2), 
leads to the next corollary. 

Corollary B.2. The restricted three-cell model of type A must have 
C31 = 1. 

Theorem B.3. For stable fixed points (no limit cycles) in the 
restricted three-cell models of type A, we must have C21= 1 whenever 
C23 = -1 .  
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Proof .  State 7 would be a fixed point provided 

C21 + C22 + C23 = C21 + C23 + 1 > 0.5 (B.3) 

If C23 = - 1 ,  the only way to satisfy condition (B.3) is to choose 
C21 = 1. 

A P P E N D I X  C. LATTICE M O D E L S  OF I M M U N E  S Y S T E M S  

Only the global concentration of each cell type enters into the K U T 
and WAC models and therefore there is no intrinsic length scale in these 
models. In order to take into account the local fluctuations, if any, of the 
five different types of cells in the Weisbuch-Atlan model, Dayan et al. (~5) 

introduced an extended version of the WA model. The model of Dayan 
et al. consists of N sites on a d-dimensional lattice, each lattice site contain- 
ing five different types of cells. Each of the lattice sites has been interpreted 
as a local neighborhood in the immune system. Each cell interacts not only 
with the other cells at the same site, but also with those at the 2d nearest- 
neighbor sites on the d-dimensional hypercubic lattice. The results of com- 
puter simulation of the lattice models in two (~5) and three (x2'~6) dimensions 
have already been reported. Very recently, Neumann (17) has simulated the 
K UT model on a lattice. The WAC and KUT models can be regarded as 
the mean-field approximations, respectively, to the models of Dayan 
et aL (~s) and Neumann. (17) We have also simulated the lattice versions of 
our models. From the point of view of statistical mechanics such short- 
range lattice models are more interesting than the corresponding mean- 
field (infinite-range interaction) models. However, in the present context 
the biological relevance of the lattice model is not clear, because usually 
cells and antigens spread relatively fast within the body. 

C.1. Nonrandom Lattice Models  of  Immune Response 

As emphasized elsewhere, ~12"17) for a given model of immune response, 
there is no unique prescription for formulating the corresponding lattice 
versions. However, our final results are not sensitive to these finer details. 
We simulated systems as large as 9600 x 9600 on a Cray-YMP and could 
update up to 1600 cells/#sec per processor. So far as the initial states are 
concerned, in the case of the extended K U T  model on a lattice, 1% of the 
sites are assumed to have a high concentration of antigen, and in the case 
of the models of AIR, 1% of the sites are assumed to have a high concen- 
tration of the inducers. The choice of t %  is, of course, arbitrary. In the 
case of the extended KUT model the state 14 is found to spread over the 
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whole lattice just like forest fire. Similarly, in the case of the models of AIR, 
depending on the particular model, either the immunized state or the sick 
state spreads. The time taken to get into the final state varies as (log L) m 
for L • L lattices. This spreading phenomenon is very similar to that 
observed by Dayan et al. and can be explained in the same way. More 
interesting phenomena are observed in these lattice models if the thresholds 
for the cells are increased to 5/2, as suggested by Weisbuch. (~~ 

C.2. Randomly Mixed  Lattice Models  of A u t o i m m u n e  
Response 

Let us first give the motivation for constructing such random 
models. ~12) Suppose the local neighborhoods in a biological system can be 
perturbed independently by some means such that the interaction between 
two types of cells can be broken at some parts of the body. In order to 
describe such a situation, it would be appropriate to have a lattice model 
where each lattice site chooses one of the two possible dynamics with a 
given probability. This is the motivation behind the choice of randomly 
mixed interactions. 

Although the principles are quite general, we use specific examples just 
to illustrate the main features. We begin by defining two three-cell models 
on a d-dimensional lattice. Model I is defined by 

1)=0 {Y~ [sl(t)+s2(t)3 s l ( t+ 

s2(t + 1) = o {Z [sl(t) - s3(t)] (I) 

s3(, + 1)=o {Y sl(t)} 

and model II is given by 

Sl(t + 1)=O {~ [Sl(t)+ S2(t)]} 

S2( t+  1)=O{~S~(t)} (II) 

S3(t + l)=O {~,S2(t)} 

where O(x) is the same function as defined by Eq. (3). The summations are 



Models of Immune Response 1041 

to be performed over the site i as well as the nearest-neighbor sites of i on 
the lattice. 

In this random model at every instant of time each of the lattice sites 
randomly chooses to follow dynamics I (or dynamics II) with probability 
p (with probability l - p ) .  Randomness enters this model through the 
probabilistic choice of the dynamics by each lattice site at every time step. 
Since randomness in this model is a function of time, it is an annealed 

model. One can also develop the corresponding quenched model, where the 
rules of dynamical evolution, once chosen probabilistically for the various 
sites at t = 0, remain unchanged for all later times, The reason we chose 
these two particular models for illustration is that the mean-field versions 
of these two models are the two satisfactory models of type B, shown in 
Figs, 2b and 2e. 

The special cases p = 1 and p = 0 correspond, respectively, to the two 
nonrandom models I and II. Only 1% of the lattice sites are assumed to 
have initially high concentration of the inducer cells. It is quite 
straightforward to see that in the case of models I and II, respectively, 
states 5 and 7 spread over the whole lattice, just like the spreading 
phenomenon in the case of the other nonrandom models described in the 
preceding subsection. 

For  0 < p <  1 we observed that in the steady state of both the 
annealed and quenched models a fraction p of the lattice sites are in state 5, 
whereas the remaing sites are in state 7, In the annealed case the state of 
an individual lattice site keeps fluctuating between 5 and 7 for all times, 
although at every instant of time the fraction of the sites in state 5 (and 
also in 7) remains p, except for small statistical fluctuations arising from 
the finite lattice size. This is analogous to an annealed random spin system. 

A different type of lattice model (21) regards an occupied site as a single 
cell or antibody and observes the motion and reaction of such cells on a 
sparsely populated lattice. We did not use this method here. 
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